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ABSTRACT Diabetic Retinopathy (DR) is a degenerative disease that impacts the eyes and is a consequence
of Diabetes mellitus, where high blood glucose levels induce lesions on the eye retina. Diabetic Retinopathy
is regarded as the leading cause of blindness for diabetic patients, especially the working-age population
in developing nations. Treatment involves sustaining the patient’s current grade of vision since the disease
is irreversible. Early detection of Diabetic Retinopathy is crucial in order to sustain the patient’s vision
effectively. The main issue involved with DR detection is that the manual diagnosis process is very time,
money, and effort consuming and involves an ophthalmologist’s examination of eye retinal fundus images.
The latter also proves to be more difficult, particularly in the early stages of the disease when disease features
are less prominent in the images. Machine learning-based medical image analysis has proven competency in
assessing retinal fundus images, and the utilization of deep learning algorithms has aided the early diagnosis
of Diabetic Retinopathy (DR). This paper reviews and analyzes state-of-the-art deep learning methods in
supervised, self-supervised, and Vision Transformer setups, proposing retinal fundus image classification
and detection. For instance, referable, non-referable, and proliferative classifications of Diabetic Retinopathy
are reviewed and summarized. Moreover, the paper discusses the available retinal fundus datasets for
Diabetic Retinopathy that are used for tasks such as detection, classification, and segmentation. The paper
also assesses research gaps in the area of DR detection/classification and addresses various challenges that
need further study and investigation.

INDEX TERMS Diabetic retinopathy, diabetes mellitus, diabetic macular edema, lesion, microaneurysms,
haemorrhages, exudates, classification, supervised learning, self-supervised learning, transformers.

I. INTRODUCTION
Diabetes Mellitus is a chronic disease where blood glucose
levels tend to increase due to the lack or inability of the
pancreas to produce or secrete sufficient blood insulin [1].
Diabetes incidents have risen rapidly over the past decades,
from 108 million in 1980 to 422 million in 2014 [2]. Adverse
effects of diabetes on human organs include the liver, heart,
kidneys, joints, eyes, etc. [1], [2]. Diabetes serves as the
most prominent reason for blindness for people under the age
of 50 years. Diabetes Mellitus is a direct cause of Diabetic
Retinopathy (DR) which is a complication of diabetes where
glucose blocks blood vessels that feed the eye and causes
swelling and leaking of blood or fluids that can cause severe
eye injury. The detrimental vision loss due to DR occurs
primarily when there is retina central swelling. According to
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the World Report on Vision, an estimated 11.9 million suffer
from vision impairment, whether mild or severe, by virtue
of glaucoma, trachoma, and DR, which is the focus of our
paper [3]. In order to avoid complications associated with
chronic diseases such as Diabetes, early detection is vital.
Abnormal growth of blood vessels in the retina is a potential
consequence of DR, which can cause scarring or bleeding
from the retina and consequently blindness [3]. This can
result in progressive vision loss with possible blindness at
advanced stages. Globally, DR amounts to 2.6% of causes
for blindness [4]. The amount of time a patient is diabetic,
high haemoglobin A1c, and high blood pressure readings
are considered to be the highest risk factors associated with
the development of DR [5]. Regular screening is crucial for
diabetic patients to ensure that DR is detected at an early
stage. DR detection traditionally involves a physician’s exam-
ination of retinal imaging for the shape and appearance of
different types of lesions. Generally, the four types of lesions
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diagnosed are Microaneurysms (MA), Haemorrhages (HM),
soft and hard exudates (EX) [6].
• Microaneurysms (MA) is an early stage of diabetic
retinopathy where small red round dots are present on
the retina virtue of vessel wall weakness. The dots
are defined by sharp margins with a size of not more
than 125 micrometres. Microaneurysms can be further
classified into six types, but treatment remains uniform
regardless of the sub-type [6].

• Haemorrhages (HM) are diagnosed by the presence of
large spots on the retina with irregular margin sizes
of upwards of 125 micrometres, contrary to Microa-
neurysms. Haemorrhages can be classified into two cat-
egories known as flame and blot, where the spots are
superficial and deep, respectively [8].

• Hard exudates are a consequence of plasma leakage
and are visible as yellow spots on the retina caused by
leakage of plasma. They span the outer retina layers and
have sharp margins [1].

• Soft exudates are a consequence of nerve fibre swelling
and are visibly white ovals on the retina [6].

Microaneurysms and Haemorrhages commonly appear as
red lesions,while the two types of exudates appear as bright
lesions. Diabetic Retinopathy detection involves identifying
5 stages which are no DR, mild DR, moderate DR, severe DR
and proliferative DR [4], [8]. Figure 1 [7] illustrates the five
possible stages of DR development.

The usually occurring retinal lesions incorporate microa-
neurysms, intraretinal hemorrhages, and venous beading
(venous caliber changes consisting of alternating areas of
venous dilation and constriction). Furthermore, intraretinal
microvascular abnormalities, hard exudates (lipid deposits),
and retinal neovascularization [9] are also known to be the
common types of lesions.

DR can also be bi-categorized into two main stages known
as proliferative DR (PDR) and nonproliferative DR (NPDR).
Damage of retina vessels can cause vascular leakage of fluid
and circulating proteins into the retina leading to swelling.
At this instance, Haemorrhages, Microaneurysms, and exu-
dates can exist for which is known as NPDR. Neovasculariza-
tion absence determines the diagnosis of NDPR but may tend
to include any of the common aforementioned DR lesions.
DR progresses sequentially with incremental severity through
mild, moderate, and eventually severe PDR that is poten-
tially vision-threatening. Accurate classification of DR sever-
ity levels helps identify high risk patients and hence helps
mitigating possible problems, through appropriate referrals,
cyclic checkups, and proper treatment for sustaining current
vision [9].

Proliferative DR represents the latter stages of DR and
represents an angiogenic retinal response, in which angio-
genesis is a physiological process in which new vessels form
from pre-existing blood vessels [10]. Neovascularization of
the retina can be commonly viewed as the growth of new
vessels along what is referred to as vascular arcades in the
retina [9].

FIGURE 1. The 5 diabetic retinopathy stages, ranked by severity [7].

Manual DR detection requires highly skilled practitioners
to perform the assessments. In addition, even highly skilled
ophthalmologists suffer from inter- and intra-grader inconsis-
tencies. Therefore, automated detection of DR using accurate
machine learning algorithms has the potential to mitigate
such shortcomings.

Traditional screening of retinal diseases requires multiple
stages of scans followed by filtration techniques to narrow
down the subject samples. Optical coherence tomogra-
phy (OCT) and spatial domain optical coherence tomogra-
phy (SD-OCT) are examples of scans performed during the
screening stage. The resulting fundus images are then sent
for analysis by an ophthalmologist. This process is typically
prone to a high level of intra-grader inconsistency, Figure 2
shows how DR grading can vary across experts.

There have been multiple efforts to classify OCT images.
For instance, OCT fundus images can be classified using the
local binary pattern (LBP) proposed in 1990 and enhanced
in 2015 by Silva et al. [11], but such images are not suf-
ficient for distinguishing between proliferative and non-
proliferative DR cases. In retinal imaging, multi-color laser
and infrared are used to enhance OCT outputs, as a result
the fundus images can be classified with much higher accu-
racy. This technique allows the detection of lower level
abnormalities such as optic discs, but is still not enough
for proper DR classification. Emphasis has also been put
towards effective image processing techniques as proposed
by Gharaibeh et al. [12] to further enhance model perfor-
mance. In computer aided diagnosis (CAD), features of exu-
dates and hemorrhages are highly detectable. This allows
fundus images to be clustered into proliferative and non-
proliferative cases, where mild and severe vessel abnormal-
ities are distinguished from low level less critical lesions.
CAD is one of the fundamental diagnosis techniques in the
medical industry [13] and has paved the way for digital
medicine. Figure 3 illustrates the different DR lesions that are
detectable.

In this paper, we survey the most recent papers related to
DR classification. Overall, the focus of this paper highlights
the prevalence of Deep learning techniques for DR classifi-
cation and its impact on classification results.
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FIGURE 2. Inter-grader inconsistencies illustrated. In the highlighted red
area, columns represent a single fundus image and the rows represent
the final grade provided by the ophthalmologist.

FIGURE 3. A fundoscopic illustration of the retina, showing
Microaneurysms, Hemorrhages, and Exudates.

II. REVIEW OF SURVEY PAPERS IN LITERATURE
Attia et al. [14] survey examined DR classification methods
with a general focus on deep learning techniques and a
high focus on classical methods. Gupta and Chhikara [15]
reviewed DR detection techniques utilising Adaboost, Ran-
dom forest, SVM etc, gradually showcasing the gap that these
classical techniques present in regards to learning more dis-
ease related features. These comparisons are based on quality
of the fundus image, since some publicly available datasets
have poor contrast and image quality. Alyoubi et al. [16]
reviewed a total of 33 papers that use deep learning for
DR classification and reiterate the importance of constant
improvements to deep learning models given the increase in
diabetes cases worldwide. Authors also highlighted the use
of data augmentation to reduce overfitting in model training.
Stolte and Fang [17], Attia et al. [14] and Asiri et al. [18]
survey papers later reviewed novel DL pipelines and ML
processes, discussing different DR grading tasks (i.e. optic
disc, blood vessels, lesions, and grading). Valarmathi and
Vijayabhanu [19] discussed recent state-of the-art(SoTA)
CNN variants for DR classification while highlighting the
inconsistency in evaluation metrics for the assessment of
models in literature. Shamshad et al. [20] provides a com-
prehensive overview of how transformers work for various
medical imaging objectives, including: segmentation, clas-
sification, detection, and reconstruction. The survey high-
lights that transformer-based research for medical imaging
reached its peak around Dec 2021, with more than 40 recent

publications. The survey also shows that 73% of the papers
published in 2021 use vision transformers for segmenta-
tion tasks whereas 27% of the papers published between
2012 and 2015 use CNNs. This indicates higher demand for
transformer-based approaches in segmentation tasks. In terms
of retinal diseases, [20] surveys at a few ViT works that target
DR grading and classification with lesion detection.

Our review paper sheds light on the DR classification
using deep learning techniques. We review papers that also
address self-supervision and transformer-based approaches
which look to reduce the reliance on large annotated data. Our
main methodology review section branches into supervised,
self-supervised, and transformer techniques in literature.

III. DATASETS
Retinal fundus images (RFI) are obtained from publicly
available standard sets such as DRIVE [21], EyePACS [22],
APTOS [23], STARE [24], DIARETDB [25], HEIMED [26],
ROC [27], Messidor [28], e-ophtha [29], DDR [30], and
RFMiD [31]. The 9 sets are used for comparing different
DR classification techniques. In more focused studies, private
datasets are leveraged to enhance the accuracy of pre-trained
models. Private sets are usually small and typically obtained
from participating labs that collaborate with the researchers.
Such datasets are not shared as they are kept private. Table 1
provides an overview of all DR open source datasets. Most
datasets utilized for training come from EyePACS [22] and
Messidor-1 & 2 [28]. All lenses used to capture the fundus
images are wide lens CANON cameras with 45◦ − 50◦ field
of view (FoV). The largest datasets used are EyePACS, with
88,702 images [22] and DDR [30], with 13,673 images.

IV. REVIEW OF METHODOLOGY
Diabetic Retinopathy classification can be categorized to
either binary classification which aims to detect the presence
or absence of DR and multi-class classification, which deter-
mines the exact stage of DR. Consequently, further methods
were developed to focus on lesion-based classification. Those
classification tasks are reviewed under supervised and self-
supervised learning in the coming parts of the paper.

A. SUPERVISED METHODS
1) BINARY CLASSIFICATION
Xu et al. [45] proposed a DL model to explore the use
of CNNs for classification of retinal fundus images with
stochastic gradient descent as an optimizer. Authors have
experimented with different (9 to 18) layers with varying
kernel sizes from (1 to 5). Fundus images were resized to
(224,224,3). The model was trained on the Kaggle EyePACS
[22] image dataset for normal and Diabetic Retinopathy
images. Image rescaling, rotation, flipping, shearing, and
translation were used as augmentations to increase the diver-
sity of images needed to train the model and reduce over-
fitting. In total, 800 training images and around 200 testing
images were used. The optimal architecture was based on
eight 2D convolutional layers, with max-pooling layer (total
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TABLE 1. Datasets used for training DR detection & classification models. Label count represents {N,DR,MDR,SDR,PDR}.

of 4 max-pooling layers) after 2 convolutional layers, con-
nected at the end to two fully connected layers with a softmax
activation function for classification. The model was based
on extracted features, namely hard exudates, red lesions,
micro-aneurysms and blood vessel detection. To highlight the
main contribution of the paper, the Gradient Boosting trees
based method coupled with the extracted features mentioned
above (Hard exudates + GBM, Red lesions + GBM, Micro-
aneurysms + GBM and Blood vessel detection + GBM)
was compared against the CNN based model with and with-
out augmentations. GBM hyperparameters were used for the
number of classes which was set to 2 with a maximum depth
of 6. Extreme Gradient Boosting method (XGBoost) was
used due to its superiority against other classical approaches
in the literature. ‘‘MXNet’’ framework in the R programming
language were used.

Quellec et al. [40] trained three CNNs to classify reti-
nal fundus images as referable Diabetic Retinopathy for
stages 2,3, and 4 and non-referrable Diabetic Retinopathy
for stages 0 and 1. Kaggle DIARETDB1 [41] and private
E-ophtha images were used for training and evaluation.
Images were resized and then (448, 448) crops were taken
in the pre-processing stage followed by pixel normalization
and then the Field of View (FOV) was eroded by 5% with a
gaussian filter applied. The model’s architecture was a pre-
trained version of AlexNet and two networks of Team o_O
solutions for the Kaggle challenge [22]. Microaneurysms,
hemorrhages, soft and hard exclusions, and no DR were the
classes classified by this model.

Jiang et al. [46] used the Adaboost algorithm for effi-
cient integration of several deep learning model out-
puts using learned weights. Additionally, class activation
maps were generated using the outcome of the AdaBoost
algorithm and learnt weights in the same manner. The
model utilized pre-trained CNNs using Inception V3 [28],
Inception-Resnet-V2 [27] and Resnet152 [10] for private
dataset classification as referable or non-referable. All their
CNN’s used Adam optimizers and the AdaBoost algorithm
was used to integrate the output of the three CNNs. For
data pre-processing, the dataset images were resized to
(520, 520, 3) pixels followed by enhancement and augmen-
tation before being used for training. The model was trained
using demographically specific data fromChinese population
obtained through the Beijing Tongren Eye Center with a total
of 30244 fundus images (12513 male cases and 17731 female
cases), for diabetic patients between 8 to 98 years of age. For
pre-processing, images were normalized to 520 by 520 after
cropping the imaging area. After that, an original and trans-
formed fundus image are filtered and combined through
weighted summation, providing an enhanced image for dif-
ferent lighting conditions. The transformations applied before
training involved translation, rotation, mirroring, brightness,
contrast and sharpness. An Adam optimizer was used for the
optimization of all three models with a fixed learning rate
of 0.001, an exponential decay rate of first-order moment
estimation, and second order moment estimation of 0.99 and
0.999, respectively. The model uses local minimums gen-
erated by the three sub-models to find the global minima
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using the Adaboost algorithm, by decreasing the bias of
each respective classifier. The implementation follows three
main stages, namely distribution, initialization followed by
iterative learning and model combination.

Zago et al. [37] utilized augmented image patches of size
65 by 65 pixels for red lesion Diabetic Retinopathy using
a pre-trained VGG16 [47] and CNN with five 2D Convo-
lutional layers, five max-pooling layers and finally a Fully
Connected layer. Training dataset was DIARETDB1 [41] and
the testing was done on DDR [30], IDRiD [38], Messidor-2,
Messidor [28], Kaggle [22], and DIARETDB0 [25] datasets
for classification of red and non-red lesions. Lesion proba-
bility map of the test cases was used to classify images as
diabetic or no DR.

2) MULTI-CLASS CLASSIFICATION
This section reviews the studies in which the DR dataset
was classified by severity level i.e. Normal, Mild, Moderate,
Severe, & Proliferate.

Abràmoff et al. [36] introduced a method to Diabetic
Retinopathy by a CNN model. In pre-processing, the images
were normalized and then had a 299 pixel width for the diam-
eter before feeding the images into their model. The model
involved training 10 CNNs based on a pre-trained Inception-
v3 [48] architecture. The classification involved 5 classes,
namely, referable diabetic macular edema, moderate or worse
DR, severe or worse DR, or fully gradable. The system put
forward by Zhang et al. [49] was used to detect Diabetic
Retinopathy on their dataset. Their dataset was divided into
four classes with a total of 13,767 images. Cropping, resizing,
histogram equalization and adaptive histogram equalization
were used to pre-process the images. Image enlargement was
done through augmentation followed by contrast improve-
ment by a contrast stretching algorithm that is used for
dark images. Pre-trained CNN architectures ResNet50 [50],
InceptionV3 [48], InceptionResNetV2 [51], Xception [52],
and DenseNets [53] were finetuned for Diabetic Retinopathy
classification. New fully connected layers were trained on top
of the aforementioned CNNs. Then, the pre-trained CNN lay-
ers were fine-tuned for retraining, followed by strong model
integration. Amodel utilizing R-FCNwith modifications was
proposed by Wang et al. [54] for detecting stages of Diabetic
Retinopathy for the Messidor dataset [28] and their private
dataset as well. Their modifications involved modifying the
R-FCN by the addition of five region proposal networks and a
feature pyramid network. Augmentation was done on training
images, with excessive augmentation, particularly for the
private dataset images.

Referable and non-referable classification was done on
images by Li et al. [35] for the Messidor dataset [28]. While
the public IDRiD dataset [38] images were classified into five
classes (class 0 to class 4) by using four attention modules
and ResNet50 [55]. The features extracted by ResNet50 were
used as inputs for the initial attention modules. Average pool-
ing, max-pooling, multiplication, concatenation, 2D convolu-
tion and fully connected layers are all present in the initial two

attention modules. However, the latter two attention modules
only contain multiplication and fully connected layers. Image
pre-processing included augmentation, normalization, and
resizing.

Pao et al. [32] utilized bi-channel neural networks for the
extraction of fundus components by channel, followed by
detail enhancement using a classical sharpness enhancement
tool named unsharp masking (UM). The Kaggle Diabetic
Retinopathy dataset [22] was used for this implementation,
with 21,123 RGB fundus image sizes being selected for this
implementation. The images were resized to (100, 100, 3).
Then, flipping and rotation are used to yield a total of 33,000
images for the experiments. To compose the 30,000 fundus
images for the training set, 15,000 samples are randomly
chosen from the first group of grade 0 and another 15,000
from the second group containing fundus images of grade
1 to 4. In the same manner, 3,000 images are chosen for the
test set. The bi-channel CNN used for feature learning of
referable Diabetic Retinopathy is trained by utilizing features
fundus’s green component and gray level’s entropy images
that are initially pre-processed by Unsharp Masking (UM)
for enhanced detection of Diabetic Retinopathy especially
the referable type. The Unsharp Marking technique is used
for the amplification of gray-level high-frequency parts and
the green component of the retinal image. Per channel, four
convolutional layers are used with 5 by 5 kernels with fea-
ture map sizes/number of filters of 32, 64, and 128 for
each successive convolutional layer, respectively. For each
layer, maximum pooling, rectified linear unit activation func-
tion (ReLU) and dropout layers are used, with dropout set to
0.3 This is followed by flattening for the two channels, and
the fully connected layers linkage is used to determine the
classification of referable DR statistically.

Tymchenko et al. [33] used a multi-task learning approach
to classify DR classes, by using a deep CNN architecture
with a small decoder, namely, head and a feature extractor.
Kaggle EyePACs dataset [22] was used for pre-training of the
CNN. Other datasets that were combined for the training set
were the IDRiD dataset [38] containing 413 photographs of
the fundus and the MESSIDOR dataset [28] which contains
1200 fundus images. Augmentations that were performed on
the images include optical distortion, grid distortion, piece-
wise affine transform, horizontal flip, vertical flip, random
rotation, random shift, random scale, a shift of RGB values,
random brightness and contrast, additive Gaussian noise,
blur, sharpening, embossing, random gamma, and cutout.
The model uses ImageNet pre-trained CNNs for the initial-
ization of the encoder. They use three decoders in which
each decoder is trained to solve its own task virtue of the
extracted features using the CNN backbone with classifica-
tion, regression, and ordinal regression heads. Whereas the
classification head output is a one-hot encoded vector where
a value of 1 represents the existence of each respective stage.
The Regression head’s output is a real number in the range
from 0 to 4.5 rounded to indicate the different disease stages.
As for the ordinal regression head, data points in a category
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are all inferred to fall in all categories, thus predicting all
categories until the target category. Using an ensemble of
three heads and fitting a linear regressionmodel to the outputs
of three heads yields the overall prediction. This ensemble is
based on the sequential nature of the disease which has been
evaluated on Kaggle APTOS 2019 dataset [23].

B. SELF-SUPERVISED METHODS
Supervised learning methods are not the best choice for every
problem, especially when the data is noisy. SSL methods are
a great alternative to supervised methods and can be used to
complement supervisedmethods. SSLmethods are less prone
to inductive bias and can be used to handle cross-domain
inputs. The problem with SSL methods is that they require a
lot of data to be effective. This is a problem because the more
data you have, the more time you need to train the model.

1) BINARY CLASSIFICATION
Luo et al. [56] introduced a Self-Supervised Fuzzy Cluster-
ing Network (SFCN) that is represented by three main mod-
ules: a feature learning module for unlabelled retinal fundus
images, a fuzzy clustering module for self-supervision and
a reconstruction module. Initially, convolutional layers for
feature representation extraction make up the feature learning
module given an input fundus image, followed by deconvolu-
tional layers for the reconstruction of the retinal images. Ade-
quate information needed to reconstruct the retinal images
is satisfied in this module. Then, the feature learning mod-
ule is provided with training supervision by the fuzzy self-
supervision module through the predictions of the fuzzy clus-
tering utilized module algorithm. Through using these self-
supervisedmodels, the correlation in unlabeled retinal images
is inferred via fuzzy clustering, with probabilities belonging
to each respective cluster.

The feature learning module was devised using ResNet50
[55] having one convolutional layer, four residual blocks and
ending with a fully connected layer. The Cyclic GAN [57]
vanilla image decoder was used to achieve the image decoder,
in which the model architecture proposed by Johnson and
Fei-Fei [58] constituting a residual block with two stride-
1/2 deconvolutions for upsampling purposes with an attached
instance normalization. Regarding the fuzzy self-supervision
module, two fully connected layers are used following the
feature learning module to output the predictions, the Fuzzy
C-means clustering output is completely included in the fea-
ture module extracted from the convolution layer stack.. Dur-
ing training and testing, images are resized to (224, 224, 3)
with a batch size of 32. They used SGD optimizer with an
initial learning rate of 0.001 decayed to 0 by the end of the
300 training epochs.

2) MULTI-CLASS CLASSIFICATION
He et al. [34] introduced a novel Category Attention
Block (CAB) to experiment with features based on regions
for each respectiveDR grade. This network is commonly used
for DR multi-class classification in order to mitigate the DR

grade imbalance in distribution within most publicly avail-
able datasets like Messidor, EyePACS, and DDR. Category
attention is used to complement spatial and channel attentions
to allow the CAB to be embedded with varying non-category
centric blocks for the improvement of multi-class classifica-
tion, specifically DR grading for this application. The model
combines the aforementioned Cabinet with GABNet which
is inspired by Woo et al. [59] i.e. GAB and CAB, where
CABNet is proposed for DR grading. GAB can learn global
class-eccentric features while ignoring features like color and
texture. In conjunction, CABNet captures detailed features
of small lesions to tackle the problem of imbalanced data
distribution. Four parts build the CABNet module, namely
the backbone, Global Attention Block (GAB), Category
Attention Block (CAB) and a classifier. The attention module
consists of the GAB and CAB for which the CABNet training
is followed end-to-end.

Input fundus images are fed to the CABNet for which the
backbone network is merely used to obtain and extract feature
maps on a global scale. The model is flexible and thus any
CNN architecture can be used for the backbone for which
the features can be extracted from the last convolutional layer
with highly rich semantic features of the input fundus images.
The feature map obtained from the backbone in the earlier
step is then initially fed into a 1 by 1 convolutional layer for
input channel reduction which is then given as input to GAB
and the output of spatial attention is fed as input to CAB
and finally to a classifier for DR grading. For training, the
base CABNet model has a backbone network pre-trained on
the ImageNet dataset. Data transformations applied include
random horizontal flips, vertical flips, and random rotation
with input images of size (512, 512, 3). The learning rate
was initially set at 0.005 and systematically decayed using a
factor of 0.8 based on validation loss. Training is performed
for 70 epochs using an Adam optimizer and cross-entropy
loss function. Different backbone models were trained and
the best performing model with the minimum validation loss
is used as the base model. The batch size was set to 16.

Lin et al. [42] introduced a module named MCG-Net that
is based on Graph Convolutional Network (GCN) for the
efficient feature extraction of fundus image lesions used for
multiclass classification and improved the classification of
lesions. To improve generalization, an enhancement module
of the introduced MCGS-Net is constructed based on Self
Supervised Learning (SSL) in which a GCN is used in place
of a fully connected layer to better capture the correlation
of fundus images as a classifier. The use of self-supervised
learning leads to improvements in the CNN generalization
ability. The model has three main components which are
the backbone module for sharing feature extraction, CGCN
module (GCN for Classification), and GSSL module (SSL
for Generalization). Self-Supervision and ODIR datasets are
fed to the CNN for image representation extraction. After
the global max-pooling layer, a feature vector is obtained.
Subsequently, the GSSL allows the MCGS-Net to train
on more unannotated data by utilizing the self-supervised
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technique for which the GSSL uses a fully connected layer
as a classifier. The CGCN then uses the classifier from the
GCN for obtaining the category correlation between fun-
dus images. The model uses a total of three datasets for
the pipeline, namely the ODIR dataset [43], SSL dataset,
and GTest dataset. For testing and training the multi-class
network, the open-source ODIR dataset was used. The SSL
dataset was used to train the MCGS-Net in a self-supervised
manner in which the human-annotated labels were removed.
The GTest dataset was then used for testing the general-
ization ability on six different networks in ablation, mainly
MCGS-Net and MCG-Net. The two networks demonstrated
better performance over ResNet50 [55], DenseNet121 [60],
EfficientNet-B0 [61].

C. TRANSFORMER METHODS
The vision transformer (ViT) proposed by [62] was the first
to re-purpose the attention mechanism used for text based
data on images. In ViT, image inputs are split into patches
of (16,16), projected to embeddings with positional markers,
and are then sent to the transformer encoder layers. In the
encoder, the process works similar to text-based data, the
patch embeddings pass through a multi-head self-attention
block, where local and global dependencies of the image
are learned and concatenated. The result of the self-attention
layer is then normalized for generalizability and sent to
the final MLP head, where classification occurs and many
papers have utilized their function for Diabetic Retinopathy
classification.

Sun et al. [63] contributed to bridging the gap between DR
grading and lesion discovery by introducing a novel lesion-
aware transformer (LAT) using a unified model using a pixel
relation based encoder and a lesion filter-based decoder in
a weakly supervised lesion discovery localization setup that
uses image-level labels only. The model’s ResNet50 [55]
backbone is mainly for feature extraction for which the fully
connected layer and global average pooling (GAP) layers are
removed. Then, images are resized to a size of (512,512) and
then augmentations such as vertical flips, horizontals flips,
random cropping, and color jitter are used to increase the
number of images for training to decrease overfitting.The
testing is then done on Messidor-1 [28], Messidor-2 [28] and
EyePACS [22] datasets.

Kamran et al. [64] proposed a SoTA novel conditional
generative adversarial network (GAN) that synethsizes Flu-
orescein Angiography (FA) from fundus images, for which
the former is an exogenous dye used to injected in the blood-
stream to image the retinal vascular structure and showcase
retinal degeneration. The model offers a non-invasive alterna-
tive approach while obtaining the benefits of the dye by using
a semi-supervised training GAN setup, using different losses
with respective weights. This ViT based generative adversar-
ial network (GAN) constitutes residual, spatial feature fusion,
upsampling and downsampling modules for the generator,
while making use of transformer encoder blocks for the dis-
criminators. The model uses normal and abnormal fundus

training images to generate fluorescein angiography (FA)
images. For training, the original images of size (576,720)
are used to extract 50 images from each respective set with a
crop size overlapping of (512,512). As for image synthesise
training, a total of 850 images are extracted. Fundus images
have 3 channels (RGB)while the FA images have just a single
channel. The training and testing datasets are private and split
into abnormal and normal classes for which the annotation is
used for the supervised classification training part. In total,
there are 17 images in the private dataset, of which ten are
abnormal and seven are normal patients. As aforementioned,
due to cropping, this then extends to 500 images for abnormal
class and 350 for the normal class.

Papadopoulos et al. [65] proposed a transformer-based
method for the independent extraction of required local infor-
mation through combining several rectangular patches with
an efficient attention structure focused on eye regions with
lesions (abnormal images) for classifying images. The model
also utilizes the attention mechanism to generate heatmaps.
The image preprocessing process included Hough transform,
random resized cropping, subtracting image local color aver-
age for different lighting conditions, and zeroing the outer
5 percent of the retina disk. The model was trained on
the kaggle EyePACs datset [22] andd testing conducted for
Messidor-2 [28], IDRiD [38] and Kaggle EyePACs [22]
datasets as well.

Yu et al. [44] introduced a novel transformer-based tech-
nique through pre-training on a large number of fundus
images followed by fine-tuning on a classification task. The
model uses a multiple instance learning (MIL) based ‘MIL
head’ that is attached to the ViT in a plug-and-play man-
ner to improve on the downstream classification task.The
private dataset used for training mainly was obtained from
a tele-opthalmology platform, which contains a total of
345,271 fundus images with the most common retinal condi-
tions labeled namely normal, diabetic retinopathy, glaucoma,
cataract and macular degeneration, but since some conditions
occur simultaneously the pretraining is set as a multiclass
classification task with 95 and 5 percent split for training
and validation, respectively and images resized to (384,384).
As for the downstream task the APTOS [23] and RFMiD [31]
datasets are used for training and testing. For the two datasets,
the images are resized to (512,512).

V. REVIEW OF RESULTS
This section sheds light on the most novel studies with their
reported results. The idea is to compare and discuss the top
performing methods and explore their scalability and gener-
alizability to some extent. All results are reported in Table 3.

A. EVALUATION METRICS
For DR detection and classification, the AUC, F1, and Kappa
scores are used as themainmetric for determining the validity
of the results, while other metrics such as accuracy and
recall can be considered support metrics. This is because data
distribution is imbalanced within each dataset. The equations
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TABLE 2. Evaluation metrics.

in Table 2 show how the metrics are calculated with some
use-cases.

B. SUPERVISED RESULTS
1) BINARY CLASSIFICATION
Pao et al. [32], presents a model that generates entropies of
each fundus image, allowing it to further highlight the lesion
edges and create areas of interest for the feature extractor
during binary classification. With that, it achieves 87.37%
accuracy and an F1 of around 81.8%. In this study, the AUC
of the ROC curve is used as a core indicator of perfor-
mance, ignoring imbalances in the fundus data. Both studies
by Tymchenko et al. [33] and Pao et al. [32] extract features
from lesions to some extent, but fail to identify the type of
lesion with the final output. Tymchenko et al. [33] takes it
one step further by identifying the DR stage as being one of
the five stages: mild, moderate, severe, or proliferate.

Similarly, the model proposed by Zhang et al. [49] was
able to identify the different severity levels and achieve a
multi-class accuracy, specificity and sensitivity of 96.5%,
98.9% and 98.1%, respectively. However, this model does not
detect retinal fundus lesions and the results were limited to the
private dataset used for evaluation.

Hua et al. [39] proposed an uncommonmodel RFA-BNET
that stands out due to its approach, however it utilizes a
ResNet-101 as it’s backbone. Hua et al. [39] model aggre-
gates features from multiple rounds through the ResNet-101,
it achieves a relatively lower accuracy rate than the rest of the
ensemble models. Hua et al. [39] reported a 95.1% accuracy
and a recall of 79.3%.

2) MULTI-CLASS CLASSIFICATION
The study by Tymchenko et al. [33], utilizes transfer learning
in a 3-headed ensemble CNN architecture (classification,
ordinal, and regression) and achieved the best results using
an ensemble of 20 different models and a trimmed mean
of 200 five-class predictions for each fundus image. Using

training time augmentations (TTA), the model achieved
99.3% accuracy. The model’s quality was assessed using
binary classification screening and achieved an F1 score
of 99.3%.

One of the most complex models proposed by Zhang et al.
[49] utilizes an ensemble of pre-trained networks that is ulti-
mately developed into a whole framework for DR detection,
but when compared to Li et al. [35] study which uses a single
ResNet50 layer, the results are not that far from what can be
achieved by a high-grade ensemble network. Li et al. [35]
was able to achieve a sensitivity, AUC, and accuracy of 92%,
96.3% and 92.6%, respectively, for theMessidor dataset [28],
while the achieved accuracy for IDRiD was around 65.1%,
no precision or F1 was reported. In an attempt to reduce
the number of trainable parameters, Zago et al. [37] proposes
a a VGG16 network achieving a sensitivity of 0.94 and an
AUC of 0.912 for the Messidor dataset [28], in contrast, this
model can only detect DR without any indication of severity.
Similarly, no precision or F1 was reported.

C. SELF-SUPERVISED RESULTS
1) BINARY CLASSIFICATION
Luo et al. [56] uses the SFCN model trained on 25 DRIVE
images. It was able to achieve an accuracy of 81.7%. In com-
parison, Hua et al. [39] RFA-BNET uses 20 images with
extensive augmentations, and achieves an accuracy of 95.1%.
No tests were reported to show its generalizability to other
sets like EYEPACs.

2) MULTI-CLASS CLASSIFICATION
CABNet by He et al. [34] trained with 70 epochs on the
EYEPACS set, was able to generalize to Messidor and
achieve a very competitive accuracy and kappa of 84% and
85.5% respectively. CABNet’s custom-made attention block
makes it easier to interpret how the model works and what
areas of the fundus images contribute to the embeddings.
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TABLE 3. DL methods for DR detection & classification. Highest scores reported.

Such an architecture gives CABNet an edge in terms of
customizing the attention blocks and adds to its flexibility.

Lin et al. [42] MCGG-Net on the other hand, is trained
with 60 epochs on 9000 ODIR images and achieves an F1
and kappa of 86.56% and 38.77% on the GTest dataset

respectively. These results show that the model is able to
generalize to other fundus images on an entirely different
set, using only the embeddings of an image with little to no
labels. In comparison, the best performing multi-class super-
vised model by Tymchenko et al. [33], was able to achieve

28650 VOLUME 10, 2022



M. Z. Atwany et al.: Deep Learning Techniques for Diabetic Retinopathy Classification

an F1 and kappa of 84% and 96.9% respectively. This three-
headed CNN uses a complex ensemble training process with
extensive augmentations. MCG-Net only performs a single
augmentation of a flips, while CABNet uses flips and rota-
tions. Given the fact that SSL models see great efficiency in
the data pre-processing stage, they are generally faster to fine-
tune and adapt to new fundus images and can generalize far
better than supervised models. The benefit comes into play
where research is required to be done on a wide range of
datasets.

D. TRANSFORMER RESULTS
1) BINARY CLASSIFICATION
VTGAN by Kamran et al. [64] introduced an GAN evalua-
tion framework that leverages two assessments. The qual-
itative assessment looks at the architecture performance in
terms of Frechet Inception Distance (FID), which looks at
the image quality of the GAN model and Kernel Inception
Distance (KID) which looks at image features and struc-
tural similarity to the original fundus counterpart. The results
indicate at least 30% better FID and KID scores compared
to SoTA like A2GAN [66] and StarGAN-v2 [67]. In the
transformed images, VTGAN also gains a 5% improvement
over SoTA. The Overall average qualitative precision score
is 45.9% and an average quantitative accuracy of 78% has
been achieved on out-of-distribution transformed images vs.
85.7% on in-distribution fundus.

Another Multiple-instance learning (MIL) study by [65],
utilizes MIL in its attention mechanism to treat patches of
DR lesions as a bag of features, retaining only relevant
information for the classifier to work with. This technique
allowed the production of high-quality attention maps that
highlight detected lesions, eliminating the black box. Using
random patch selection, the MIL model [65] achieved 95.7%
AUC on Kaggle EYEPACS [22] and 99% AUC onMessidor-
2 [28]. The paper also studies the effect of lesions on attention
weights using a lesion classification approach. The conclu-
sion was that smaller lesions with more characteristics or
variations yielded higher attention weights. AUC of 80% was
achieved on all lesions (Microaneurysms, Haemorrhages, and
Exudates).

2) MULTI-CLASS CLASSIFICATION
MIL-VT [44] is another similar MIL model that is capable
of classifying the DR disease level. The approach used in
MIL-VT is almost identical to the vanilla ViT [62] approach
for generic images, with the addition of an MIL embedding
layer that aggregates patches based on features and atten-
tion before sending them to the MIL classifier (MIL Head).
On APTOS [23], MIL-VT achieved 94.4% F1 in DR disease
classification and 85.5% accuracy in DR grading. Compared
to SoTA, GREEN-SE-ResNext50 achieved an F1 score of
85.3% and accuracy of 85.7%.

Lesion Aware transformer (LAT) [63] performs DR grad-
ing using attention blocks rather than full transformer

architectures. The idea is that a self-attention layer encodes
and outputs contextual features of lesions that are then
blended into the final output. By using an approach known
as lesion importance learning, [63] achieved a DR grading
accuracy of 96.3% on normal fundus and 98.7% on fundus
with detected lesions (referrals). This outperforms SoTA such
as CANet [35] and Semi+Adv [68]. What makes the eval-
uation unique is the ablation study developed to assess the
5 network components, namely: pixel relation encoder (P),
self-attention layer (S) and cross-attention layer (C), region
diversity mechanism (D), and global consistency loss (G).
By gradually adding the components and testing the network
end-to-end using AUC and Kappa metrics, it was concluded
that LAT [63] achieved maximum Kappa and AUC using all
5 components working collectively.

VI. DISCUSSION
This paper reviews 11 supervised, 3 self-supervised, and
4 transformer papers by analyzing the results and techniques
of each method used. The main idea behind this paper is
assess DR grading and classification methodologies from
a qualitative point of view, which essentially allow future
research work to be aware of the advancements in the DR
domain.

In the supervisedmethods, 54% of the studies reviewed use
binary classification for DR detection, while the remaining
46% classify DR by 4 severity stages. In the self-supervised
methods, 67% use multi-class detection and the remaining
33% use binary. In terms of datasets, a few studies tried to
use self-developed private sets for total control, this generally
showed enhanced results as with Tymchenko et al. [33] and
Zhang et al. [49], however, no correlation can be deduced due
to varying data distributions. About 57.2% of the studies train
their models on multiple datasets while the remaining 42.8%
use a single dataset. Figure 4 summarizes some collected
statistics. Supervised models are robust and work great for
specific tasks. A common issue the papers generally fail to
highlight is the extreme amount of time needed to train new
models every time. For mission critical models that are con-
stantly bombarded with new data, the process of annotating
and structuring the data to make it ‘‘model ready’’ almost
defies their purpose. Ensemble learning pipelines in DL are
great at handling features in variable data distributions and
must be promoted in the supervised learning context.

Self supervised models show a competitive edge regarding
fine-tuning on new sets. All 3 papers suggested that training
on a very large dataset such as Messidor or EYEPACS would
allow the model to generalize to a wider range of sets, such
as DRIVE and GTest. This was proven to be true from the
presented results. However, in order to make sense of SSL
models, it is required to understand how it interprets the data
that is fed into it. Luo et al. [56] Luo’s paper uses t-SNE plots
to interpret how SFCN is able to partition normal and abnor-
mal images. A. He et al. [34] uses attention maps to visualize
what the model focuses on in terms of features. The heatmaps
illustrate how CABNet’s attention block helps narrow down
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FIGURE 4. Top chart shows the classification segment distribution across
11 supervised studies (inner circle), 3 self-supervised studies (middle
circle), and 4 transformer studies (outer circle). Bottom chart shows
evaluation metric usage distribution across 11 supervised studies (inner
circle), 3 self-supervised studies (middle circle), and 4 transformer
studies (outer circle).

the features that are selected. This can essentially reduce the
size of embeddings needed to generalize. While studies show
the power of self supervised approaches relative to supervised

methods, they do not show how SSL methods can be less
prone to inductive bias in the long run. SSL methods are
known to cope well with cross domain inputs as well, this sort
of advantage is crucial when selecting a model for mission
critical applications. Moreover, the papers fail to discuss SSL
methods’ robustness when working with small-scale datasets.

DR screening remains an open issue due to the limited
number of public datasets, and while most of the recent
DL advancements achieve promising scores in classification,
some still lack the ability to distinguish affected lesions.
Other methods just ignore the 5 DR stages that are considered
crucial for determining the severity of the disease. This sort
of dissimilarity in the techniques reveals another impeding
problem. The fact that there are no standard practices that
agree on a common set of DR stages shows that researchers
in the field may still have different opinions on the validity
of the results. Most of the end results, however, can only be
used for diagnosis and are never deemed final.

As a future direction, upcoming studies should focus on
leveraging SSL methods to not only generalize but also be
able to generate new fundus images based on the learned
features using generative networks. Generative adversarial
networks (GAN) and Variational auto-encoders (VAE) can
be combined with existing networks to synthesize a whole
range of enhanced fundus images that can be made avail-
able for training. As an example, DALL-E proposed by
Ramesh et al. [69], is capable of generating images from text,
such a model could potentially generate large collections of
DR fundus images that can be trained and tested on.

Another direction could be the utilization of self-
supervised vision transformers, such as DINO proposed by
Caron et al. [70] to encode better features when large-scale
DR sets are provided. Transformers have shown a positive
correlation between the number of trainable parameters and
accuracy, hence they are immune to saturation with larger
sets and varying data distributions. What vision transformers
would solve is the increasing complexity of CNN layers
as the size of the filters increase. CNNs cannot capture a
global understanding of the image because they may not
retain visual features throughout the network. Meanwhile,
vision transformers take their advantage from their attention
mechanisms and are able to find relationships in flattened
feature sequences.

In recent studies, attention mechanisms brought upon sig-
nificant changes to the way images are interpreted and con-
textualized. The transformer-based models surveyed show
promising performance in the medical imaging domain for
binary and multi-class classification of DR disease. One
notable improvement introduced in these transformer studies,
is the ability to distinguish smaller lesions in much more
detail, providing better explainability to the classification
obtained. While the results show satisfactory performance
and improvements over CNNs, there are yet to be additional
studies that benchmark models in deployed environments.
In most cases, vision models tend to fail once deployed in
the real world.
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FIGURE 5. Distribution of studies in terms of model explainability, sorted
by model type. As transformers evolve, more explainable models emerge.

VTGAN [64] is one example that works really well in the-
ory, but may miss out on certain distortions that are otherwise
not typically synthesized in fundus image generation. For
instance, noise, blur, and warping may coincidentally exist
in real fundus scans, but are not accounted for together in the
qualitative assessment, mainly due to architectural limitations
in the network.

On the other hand, transformer-based studies introduced
more valuable white-box approaches, such as different abla-
tion and evaluation techniques that target explainability and
justification of results. By using attention maps and feature
enrichment techniques, the models incorporate context more
effectively and are able to produce attention maps that high-
light detected lesions. Explainable architectures are deemed
to be more plausible in the real-world industry. In the medical
domain, every decision needs to be justified through insight,
research, and scientific proof. Interpretable design is the key
in integratingmedical imagingmodels in the end-to-end oper-
ational pipelines of many institutions and research facilities.

VII. CONCLUSION
While DR cannot be cured, it is important to detect it in its
early stages to prevent further damage. For example, non-
proliferative DR stages will almost always contain early indi-
cators of DR and the ability to detect and classify those stages
using a proper evaluation technique could mean saving one’s
eyesight. In this review paper, a major portion of the work
focuses on the study of hemorrhages, microaneurysms and
exudates. Results from multiple studies show an accuracy
average of about 91% and promising classification perfor-
mance overall. Screening systems being developed today
could incorporate these DL based approaches to enhance and
classify the DR stage using lesion detection techniques across
multiple fundus images. The main issue addressed in the
reviewed studies is the manual diagnosis that has to occur
after screening, which is typically a lengthy process prone to
ophthalmologists’ bias. Moreover, dataset limitations restrict
fundus image variations that can be used in the assessment of
indicators.

Because of the efficiency of Deep Learning techniques, the
analysis of retinal scans has become faster, more inclusive,

and generalizable, yet the metrics used in the evaluation of
the results and their respective datasets remain biased and
unbalanced across different studies. Ultimately, classifying
DR is crucial, but understanding the various causes can also
be a valid research opportunity. For instance, specific lesion
changes and other hidden indicators could potentially hint at
the possibility of developing DR. Other research directions
could involve studyingDiabeticMacular Edema (DME) since
detecting DME is highly likely to mean that the retina is
developing DR. With these advancements, it is possible to
generalize DL based models and assess a wider range of
symptoms and indicators that could help researchers get a
better understanding of the causes of retina based diseases.

Lastly, Transformers introduced more explainable meth-
ods that can help overcome the limitations of non-
generalizability. Hidden indicators can now be detected
more accurately, thanks to the various context enrichment
approaches used in patching and embedding of fundus
images. In SSL and Supervised methods, only 2 papers stood
out in terms of interpretability of the results, namely, Tym-
chenko’s CNN Ensemble model with SHAP analysis [33]
and He’s CABNet with attention maps [34]. Figure 5 shows
the study distribution in terms of method and network inter-
pretability. Ultimately, transformer-based models enable bet-
ter interpretability for researchers and future work
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